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ABSTRACT

The project uses a large dataset to look at how humans choose numbers. We use
cumulative frequency charts to compare this distribution to others and find that, while we
appear to see a logarithmic scale, what we find is a set of uniform distributions. From this,
we make a rigid algorithm that represents the way that humans generate random numbers.

INTRODUCTION

Humans have an odd understanding of distributions. While adults believe that their
perception of natural numbers is linear, the natural way for humans to count is more similar
to a logarithmic scale'?, whereby, for example, the perceived difference between 1 and 2 is
much greater than the perceived difference between 150 and 151.

We can gain insight into this distribution by looking at the way humans try to generate
random numbers that follow a uniform distribution. If a computer were to generate these
numbers, each number would be equally likely to be chosen. But in a logarithmic distribution,
numbers near the start of the range are more likely to be chosen.

DATA COLLECTION

The human-generated numbers come from a Reddit thread created in 2018 by user
itsrealgood®, in which they asked over three hundred people to generate ten numbers from 1
to 1000000, with mixed success. The number 69 occurs 14 times within the data, and 420
occurs 11 times. These numbers have different meanings across the internet, and so might
have been given as a joke by respondents. This must always be considered when looking at
human-generated datasets.

Another problem with human-generated datasets is that it can be clear that people weren’t
truthfully answering the questions. Four people only answered 1 as each of their 10
numbers, one person just answered 2 and for with ascending numbers from 1 to 10. By
taking these data points into account, and others similar to them, we wipe out the outliers at
1 and 2.

However, this creates an issue in itself - how can we judge what counts as a clear deviance
from the question? We would, of course, expect a proportion of repeated numbers in an
infinite uniform dataset, so should we remove them? While it would seem that the answer is
a resounding yes in this particular scenario, we must consider whether this deviation from
uniform is exactly what we are testing for.

' Log or Linear? Distinct Intuitions of the Number Scale in Western and Amazonian Indigene Cultures
2 Why do we perceive logarithmically?
3 https://www.reddit.com/r/SampleSize/



https://www.reddit.com/r/SampleSize/comments/7vzi2r/casual_pick_10_random_numbers_between_1_and/
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1740-9713.2013.00636.x
https://science.sciencemag.org/content/320/5880/1217.abstract

This is one of the issues with this particular data set. Each individual will have a different way
of generating numbers, and asking for ten numbers from each will allow them to have too
much influence in the final dataset. However, asking for just one datapoint from each
respondent will reduce our data set by a factor of ten, and for any analysis, that is too big to
just miss out on.

DATA ANALYSIS

1(a); Cumulative frequency chart showing 1(b); Cumulative frequency chart showing
around 3500 human-generated random 3500 machine-generated random numbers in
numbers in the range 1 to 1000000 the range 1 to 1000000

By comparing the two graphs, we can see clearly that the human-generated numbers
appear to follow a logarithmic pattern. But really, it's more complicated than that. Looking at
the data, you may notice some straight lines that the chart seem to follow, at regular
intervals. These have been highlighted in chart 2 to make them more obvious.

These straight lines follow what we would expect
from the machine-generated numbers, as in chart
1(b), and so we can conclude that humans used a
method of choosing one of these ranges in which
we see straight lines, and then using a uniform
method to choose the number within the range.

It would be reasonable to suppose that these
ranges could correlate with the length of the digits in
each number, with people first choosing the number
of digits and then randomly choosing their number.
We can test this proposal by looking at each range’s
distributions.

2: Figure 1(a) with approximate straight
lines highlighted in red.
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3(a): Frequency chart for the range 1-9
inclusive. While 1 and 2 are noticeably
more common than the other numbers, the
rest appear with similar frequency.

3(b): Frequency chart for the range 10-99
inclusive. Up to about 20, frequencies are
higher, and there are multiple peaks and
troughs, most noticeably 69. Aside from
this, it is hard to tell how the frequencies are
distributed.

3(c): Cumulative frequency chart for the
range 10-99 inclusive. Note the sharp rise
at 69.

3(d): Cumulative frequency chart for the
range 100-999 inclusive. Note the similar
sharp rise at 420.



3(e): Cumulative frequency chart for the
range 1000-9999 inclusive.

3(f): Cumulative frequency chart for the
range 10000-99999 inclusive.
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3(g9): Cumulative frequency chart for the
range 100000-999999 inclusive.

1000 -

curnulative - 1821

250000 500000 750000 1000000
number

Some of these charts are similar in shape to the one in 1(b), supporting the proposal, but
there are some notable exceptions. In 3(c) and 3(e) especially, the graphs appear to be
decreasing and so it would seem that the earlier numbers are more likely to occur. Having
said that, these distributions are much more uniform than 1(a).

It would seem, then, that people do choose numbers first by choosing the number of digits
and then by choosing the number. If we take these ranges into account, human-generated
numbers can be uniform. But how is a range chosen?

DEFINING RANGES

EXPECTED Using the data in table 4, we can see that
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To put this into context, let us pose the following question: suppose one large dataset, of
which 50% of the data points are human-generated, and 50% are generated using a uniform
random distribution. If we pluck one data point out at random, and we do not know how it
was generated, can we work back and find out the probability that it was generated by a
human?

The answer is, of course, yes. We can do this by looking at the ratio of occurrences of this
number between each 50%: P/E(P). If we know that the number has six digits, then the
human:random ratio is 0.71:0.9. In other words, the probability that the number was
generated by a human is 0.71/(0.9+0.71)=0.44. We can do a similar analysis for other
attributes, as well as individual numbers.

Our dataset isn’t large enough to accurately analyse individual numbers using solely the
proportion of that number which occurs. Instead, we can look at a combination of attributes,
which define only that number in the range. One example of an attribute is the relationship
between consecutive numbers. How often does a 4 follow a 5? This seems like a reasonable
thing to analyse, as it could be proposed that people generate a number by first choosing a
range, as we discovered, and then choosing each digit one by one.
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digit frequency 5(c): The frequency of each digit within the human-generated data
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Looking at table 5(a), some patterns seem to emerge. 1 and 9 are the most common starting
digits, with 3 and 4 the least common. The most common consecutive digits lie close to each
other, with a weak direct proportion between the size of one digit and the one that follows it.
The only digit this doesn’t apply to is 0, of which the opposite is true, usually preceding or
following larger digits. Looking at 5(c), digits in the middle are more frequent, and 0 is
noticeably less common, appearing just 8.4% of the time.

Using this data, we can find a supposed probability of every number using the following
formula:

P/E(P) = P(number of digits is as given) X Il P(digit follows previous digit)

The number we can be most sure was generated by a human is 10, appearing 153 times as
a human-generated number for every time it appears as a randomly generated number.
316080 is the number that is least likely to be generated by a human using this method,
appearing as such just 0.062 times for every time that is randomly generated in a uniform
distribution.

Extending this method will always get us caught in a loop for much larger numbers. This can
be seen in 316080 - if extended to the least likely 15 digit number, this would be seen as
316080808080808: the formula would put the probability of this being generated by a human
as relatively tiny, when it would seem to any observer due to the recursion that this is
extremely likely to have been generated by a human.



THE HUMAN DISTRIBUTIONS
We can define this distribution in a much more structured way if we assume that all digits are
equally likely. We do so as follows:

X ~ Human(pl, [ pR)

WhereX € N, 1 < X < 107
And p_is the probability that X has r digits

For this distribution, it is clear that

p
P(X =x) = —
9%x10
Where r is the number of digits in x (1)

We can also find E(X) as follows:
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Another level of abstraction we can consider is this distribution if p, is constant - that is to
say, all digit lengths are equally likely.

X ~ SimpleHuman(R)
WhereX € N, 1 < X < 10"
We find that

1 1
R 9x10™*

P(X = x) = 3)

When we consider the expected value of the SimpleHuman distribution, the equation
simplifies somewhat well, but | will leave that derivation to the reader.

CONCLUSION

There is far further to go when looking at human-generated distributions, but the main issue
with this sort of analysis is that it requires huge datasets, the likes of which are extremely
difficult to get, let alone with any sort of reliability. The internet makes this slightly easier, but
for any sort of in-depth analysis, we would need a good few hundred thousand data points,
which could take months to collate.

Having said that, through multiple levels of abstraction we can model these nhumbers with
distributions to create somewhat coherent cumulative distribution functions.
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